Suppression of McLafferty Rearrangement in the Mass Spectrometric Fragmentation of Even-electron Systems

By MANFRED KRAFT and G. SPITELLER*

(Department of Organic Chemistry, University of Göttingen, Germany)

RECENTLY it was suggested that the prerequisite for the occurrence of a McLafferty rearrangement¹, $(I) \longrightarrow (a)$, is the presence of an odd-electron species of type (I):^{2,3}

We now present evidence that this conclusion cannot be generalized. Disubstituted malonic acids of type (II) do not show molecular ions in their mass spectra, because they easily undergo a McLafferty rearrangement to form the ion radical (b), which is cleaved as indicated to form (c). This fragment is an even-electron species, but even so it is further cleaved in the course of a second McLafferty rearrangement to an ion of mass 87 (d).

The molecular formula of (d) was established by high resolution.[†] A final proof for the reaction (c) \rightarrow (d) was provided by the spectrum of the tetradeuterated compound (III), in which the peak

† We thank Dr. W. Vetter for this measurement, performed on MS 9 double focussing instrument.

of mass 157 shifted to mass 159 and that of mass 87 to mass 88.

A further example are the spectra of straightchain aliphatic ketones. Aliphatic ketones of type (IV) lose in a nonspecific double hydrogen rearrangement⁴ (proved by labelling experiments⁵)

species of type (I) as we stated earlier,⁶ but the possibility of developing a suitable transition state. The hydrogen rearrangement may occur either as a proton shift (c) \longrightarrow (d) or as a shift of a hydrogen atom (I) \longrightarrow (a) or even as a shift of a hydrid ion (f) \longrightarrow (g).

is unique; nearly all other decomposition reactions

(another exception is the retro-Diels-Alder reac-

tion) are determined by the position of the charge

We thank "Deutsche Forschungsgemeinschaft"

(Received, July 20th, 1967; Com. 745.)

for

"Fonds der chemischen Industrie"

a radical to form the even-electron species (f), (e) \longrightarrow (f).

This fragment (f) is further degraded by a McLafferty rearrangement, which we proved with the compound deuterated in γ -position (V). The elemental composition of (g) was again established by high resolution[†].

These examples show that the prerequisite for a McLafferty rearrangement is not an odd-electron

¹ F. W. McLafferty, Analyt. Chem., 1959, 31, 82.

² C. Djerassi, M. Fischer, and F. B. Thomson, Chem. Comm., 1966, 12.

³ F. W. McLafferty, Chem. Comm., 1966, 78.

⁴G. Spiteller in "Massenspektrometrische Strukturanalyse organischer Verbindugen" Verlag Chemie, Weinheim, 1966, 125.

or the radical site.

financial support.

and

⁵ M. Kraft and G. Spiteller, to be published.

⁶G. Spiteller and M. Spiteller-Friedmann, Monatsh., 1964, 95, 257.